DNA mismatch repair enzyme expression in synovial tissue.

نویسندگان

  • E Simelyte
  • D L Boyle
  • G S Firestein
چکیده

BACKGROUND Oxidative stress in RA synovial tissue can cause DNA damage and suppress the DNA mismatch repair (MMR) system in cultured synoviocytes. This mechanism includes two enzyme complexes, hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3). OBJECTIVE To examine the expression and distribution of MMR enzymes in synovial tissues from patients with arthritis and from normal subjects. METHODS Synovial tissues from patients with RA, osteoarthritis (OA), or normal subjects were analysed by immunohistochemistry using monoclonal antibodies to hMSH2, hMSH3, and hMSH6. MMR protein expression was evaluated by computer assisted digital image analysis. RESULTS hMSH2, hMSH3, and hMSH6 were found in most synovial tissues evaluated, with greater levels in the intimal lining than sublining regions. In RA and OA, sublining perivascular staining for hMSH6 and hMSH3 was also prominent. Significantly higher sublining expression of hMSH2, hMSH3, and hMSH6 was seen in RA and OA than in normal synovium. Double label immunohistochemistry demonstrated that the main cells expressing MMR enzymes were CD68(+) and CD68(-) cells in the intimal lining. CONCLUSIONS DNA MMR enzyme expression is greatest in the synovial intimal lining layer, where maximal oxidative stress in RA occurs. Although MMR enzyme expression is greater in RA than in normal tissue, this compensatory response cannot overcome the genotoxic environment, and DNA damage accumulates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsatellite analysis in rheumatoid arthritis synovial fibroblasts.

OBJECTIVES Rheumatoid arthritis (RA) is a chronic disease characterised by irreversible destruction of the affected joints. As aggressive transformed-appearing synovial fibroblasts are commonly found at the site of invasion of the rheumatoid synovium into the adjacent cartilage and bone, the presence of microsatellite instability (MSI) and expression of mismatch repair enzymes as a possible mec...

متن کامل

Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis.

Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can potentially induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity during DNA replication. Key members of the MMR system include MutSalpha (hMSH2 and hMSH6) and MutSbeta (hMSH2 and hMSH3). To provide evidence of DNA dam...

متن کامل

P-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue

Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...

متن کامل

Selective Induction of DNA Repair Pathways in Human B Cells Activated by CD4+ T Cells

Greater than 75% of all hematologic malignancies derive from germinal center (GC) or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID), GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal...

متن کامل

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the rheumatic diseases

دوره 63 12  شماره 

صفحات  -

تاریخ انتشار 2004